翻訳と辞書 |
integral test for convergence : ウィキペディア英語版 | integral test for convergence
In mathematics, the integral test for convergence is a method used to test infinite series of non-negative terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test. ==Statement of the test== Consider an integer and a non-negative, continuous function defined on the unbounded interval , on which it is monotone decreasing. Then the infinite series : converges to a real number if and only if the improper integral : is finite. In other words, if the integral diverges, then the series diverges as well.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「integral test for convergence」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|